How to Calculate the Volume of a Regular Dodecahedron
Remember or write down the formula 15+754(a3){\displaystyle {\frac {15+7{\sqrt {5}}}{4}}(a^{3})}., Find the value of the side length and replace a{\displaystyle a}., Using the order of operations (PEMDAS), multiply 7{\displaystyle 7} by...
Step-by-Step Guide
-
Step 1: Remember or write down the formula 15+754(a3){\displaystyle {\frac {15+7{\sqrt {5}}}{4}}(a^{3})}.
This formula will be used to calculate the volume of a regular dodecahedron. , There is a picture for you to give the idea on what a{\displaystyle a} stands for.
Example:
If a problem says that a=3{\displaystyle a=3}, you can plug the value in as V=15+754(a3)=15+754(33){\displaystyle V={\frac {15+7{\sqrt {5}}}{4}}(a^{3})={\frac {15+7{\sqrt {5}}}{4}}(3^{3})}. , Note that 5{\displaystyle {\sqrt {5}}} is similar to
2.24.
Example: 15+754(33)=15+15.684(33){\displaystyle {\frac {15+7{\sqrt {5}}}{4}}(3^{3})={\frac {15+15.68}{4}}(3^{3})}. , Example: 15+15.684(33)=30.684(33){\displaystyle {\frac {15+15.68}{4}}(3^{3})={\frac {30.68}{4}}(3^{3})}. , Example:
30.684(33)=7.67(33){\displaystyle {\frac {30.68}{4}}(3^{3})=7.67(3^{3})} , Example:
7.67(33)=7.67(27){\displaystyle
7.67(3^{3})=7.67(27)} , Example:
V=7.67(27)=207.69{\displaystyle V=7.67(27)=207.69}.
Therefore, the volume of this dodecahedron is about
207.69 -
Step 2: Find the value of the side length and replace a{\displaystyle a}.
-
Step 3: Using the order of operations (PEMDAS)
-
Step 4: multiply 7{\displaystyle 7} by 5{\displaystyle {\sqrt {5}}}.
-
Step 5: Add 15 and 15.68 together.
-
Step 6: Divide the sum by 4.
-
Step 7: Cube a
-
Step 8: Finally
-
Step 9: multiply 7.67 by the product.
Detailed Guide
This formula will be used to calculate the volume of a regular dodecahedron. , There is a picture for you to give the idea on what a{\displaystyle a} stands for.
Example:
If a problem says that a=3{\displaystyle a=3}, you can plug the value in as V=15+754(a3)=15+754(33){\displaystyle V={\frac {15+7{\sqrt {5}}}{4}}(a^{3})={\frac {15+7{\sqrt {5}}}{4}}(3^{3})}. , Note that 5{\displaystyle {\sqrt {5}}} is similar to
2.24.
Example: 15+754(33)=15+15.684(33){\displaystyle {\frac {15+7{\sqrt {5}}}{4}}(3^{3})={\frac {15+15.68}{4}}(3^{3})}. , Example: 15+15.684(33)=30.684(33){\displaystyle {\frac {15+15.68}{4}}(3^{3})={\frac {30.68}{4}}(3^{3})}. , Example:
30.684(33)=7.67(33){\displaystyle {\frac {30.68}{4}}(3^{3})=7.67(3^{3})} , Example:
7.67(33)=7.67(27){\displaystyle
7.67(3^{3})=7.67(27)} , Example:
V=7.67(27)=207.69{\displaystyle V=7.67(27)=207.69}.
Therefore, the volume of this dodecahedron is about
207.69
About the Author
Lori Cook
Experienced content creator specializing in lifestyle guides and tutorials.
Rate This Guide
How helpful was this guide? Click to rate: