How to Calculate the Volume of a Regular Dodecahedron

Remember or write down the formula 15+754(a3){\displaystyle {\frac {15+7{\sqrt {5}}}{4}}(a^{3})}., Find the value of the side length and replace a{\displaystyle a}., Using the order of operations (PEMDAS), multiply 7{\displaystyle 7} by...

9 Steps 1 min read Medium

Step-by-Step Guide

  1. Step 1: Remember or write down the formula 15+754(a3){\displaystyle {\frac {15+7{\sqrt {5}}}{4}}(a^{3})}.

    This formula will be used to calculate the volume of a regular dodecahedron. ,  There is a picture for you to give the idea on what a{\displaystyle a} stands for.

    Example:
    If a problem says that a=3{\displaystyle a=3}, you can plug the value in as V=15+754(a3)=15+754(33){\displaystyle V={\frac {15+7{\sqrt {5}}}{4}}(a^{3})={\frac {15+7{\sqrt {5}}}{4}}(3^{3})}. ,  Note that 5{\displaystyle {\sqrt {5}}} is similar to
    2.24.

    Example: 15+754(33)=15+15.684(33){\displaystyle {\frac {15+7{\sqrt {5}}}{4}}(3^{3})={\frac {15+15.68}{4}}(3^{3})}. , Example: 15+15.684(33)=30.684(33){\displaystyle {\frac {15+15.68}{4}}(3^{3})={\frac {30.68}{4}}(3^{3})}. , Example:
    30.684(33)=7.67(33){\displaystyle {\frac {30.68}{4}}(3^{3})=7.67(3^{3})} , Example:
    7.67(33)=7.67(27){\displaystyle
    7.67(3^{3})=7.67(27)} , Example:
    V=7.67(27)=207.69{\displaystyle V=7.67(27)=207.69}.

    Therefore, the volume of this dodecahedron is about
    207.69
  2. Step 2: Find the value of the side length and replace a{\displaystyle a}.

  3. Step 3: Using the order of operations (PEMDAS)

  4. Step 4: multiply 7{\displaystyle 7} by 5{\displaystyle {\sqrt {5}}}.

  5. Step 5: Add 15 and 15.68 together.

  6. Step 6: Divide the sum by 4.

  7. Step 7: Cube a

  8. Step 8: Finally

  9. Step 9: multiply 7.67 by the product.

Detailed Guide

This formula will be used to calculate the volume of a regular dodecahedron. ,  There is a picture for you to give the idea on what a{\displaystyle a} stands for.

Example:
If a problem says that a=3{\displaystyle a=3}, you can plug the value in as V=15+754(a3)=15+754(33){\displaystyle V={\frac {15+7{\sqrt {5}}}{4}}(a^{3})={\frac {15+7{\sqrt {5}}}{4}}(3^{3})}. ,  Note that 5{\displaystyle {\sqrt {5}}} is similar to
2.24.

Example: 15+754(33)=15+15.684(33){\displaystyle {\frac {15+7{\sqrt {5}}}{4}}(3^{3})={\frac {15+15.68}{4}}(3^{3})}. , Example: 15+15.684(33)=30.684(33){\displaystyle {\frac {15+15.68}{4}}(3^{3})={\frac {30.68}{4}}(3^{3})}. , Example:
30.684(33)=7.67(33){\displaystyle {\frac {30.68}{4}}(3^{3})=7.67(3^{3})} , Example:
7.67(33)=7.67(27){\displaystyle
7.67(3^{3})=7.67(27)} , Example:
V=7.67(27)=207.69{\displaystyle V=7.67(27)=207.69}.

Therefore, the volume of this dodecahedron is about
207.69

About the Author

L

Lori Cook

Experienced content creator specializing in lifestyle guides and tutorials.

61 articles
View all articles

Rate This Guide

--
Loading...
5
0
4
0
3
0
2
0
1
0

How helpful was this guide? Click to rate: