How to Derive the Arbitrary Projection Operator

Begin with a spin-1/2 quantum state pointing in some arbitrary direction n{\displaystyle {\mathbf {n} }}., Calculate Pn{\displaystyle P_{\mathbf {n} }} through matrix mechanics., Decompose the diagonal elements in terms of Pauli matrices., Decompose...

5 Steps 3 min read Medium

Step-by-Step Guide

  1. Step 1: Begin with a spin-1/2 quantum state pointing in some arbitrary direction n{\displaystyle {\mathbf {n} }}.

    One can start from angular momentum and solve the eigenvalue problem to derive the state below, but we will start with it directly in this article. |↑n⟩=cos⁡θ2|↑z⟩+eiϕsin⁡θ2|↓z⟩{\displaystyle |\uparrow _{\mathbf {n} }\rangle =\cos {\frac {\theta }{2}}|\uparrow _{\mathbf {z} }\rangle +e^{i\phi }\sin {\frac {\theta }{2}}|\downarrow _{\mathbf {z} }\rangle } This is a linear combination of the up-state and down-state in the z{\displaystyle {\mathbf {z} }} basis.

    For a spin-1/2 particle, these two orthonormal basis vectors form a complete spanning set.

    Thus, any state can be expressed as a linear combination of the basis vectors.
  2. Step 2: Calculate Pn{\displaystyle P_{\mathbf {n} }} through matrix mechanics.

    When a ket acts on a bra, the result is an operator. |↑n⟩⟨↑n|=(cos⁡θ2eiϕsin⁡θ2)(cos⁡θ2e−iϕsin⁡θ2)=(cos2⁡θ2e−iϕcos⁡θ2sin⁡θ2eiϕcos⁡θ2sin⁡θ2sin2⁡θ2){\displaystyle {\begin{aligned}|\uparrow _{\mathbf {n} }\rangle \langle \,\uparrow _{\mathbf {n} }\!|&={\begin{pmatrix}\cos {\frac {\theta }{2}}\\e^{i\phi }\sin {\frac {\theta }{2}}\end{pmatrix}}{\begin{pmatrix}\cos {\frac {\theta }{2}}&e^{-i\phi }\sin {\frac {\theta }{2}}\end{pmatrix}}\\&={\begin{pmatrix}\cos ^{2}{\frac {\theta }{2}}&e^{-i\phi }\cos {\frac {\theta }{2}}\sin {\frac {\theta }{2}}\\e^{i\phi }\cos {\frac {\theta }{2}}\sin {\frac {\theta }{2}}&\sin ^{2}{\frac {\theta }{2}}\end{pmatrix}}\end{aligned}}} This is a Hermitian operator, and it must, as we are working with an orthonormal basis and real eigenvalues. , We see that cos2⁡θ2=12(1+cos⁡θ),{\displaystyle \cos ^{2}{\frac {\theta }{2}}={\frac {1}{2}}(1+\cos \theta ),} and sin2⁡θ2=12(1−cos⁡θ).{\displaystyle \sin ^{2}{\frac {\theta }{2}}={\frac {1}{2}}(1-\cos \theta ).} Therefore, part of the operator can be written as below. 12I+12cos⁡θσz{\displaystyle {\frac {1}{2}}I+{\frac {1}{2}}\cos \theta \sigma _{z}} , On the off-diagonal, we see that the signs of the complex exponential directly correspond to σy.{\displaystyle \sigma _{y}.} Using Euler's formula and the double angle trig identity, we can expand out the exponential and write out the σx{\displaystyle \sigma _{x}} and σy{\displaystyle \sigma _{y}} terms as such. 12sin⁡θcos⁡ϕσx+12sin⁡θsin⁡ϕσy{\displaystyle {\frac {1}{2}}\sin \theta \cos \phi \sigma _{x}+{\frac {1}{2}}\sin \theta \sin \phi \sigma _{y}} Putting it all together, the projection operator can be written algebraically below.

    Pn=12(I+sin⁡θcos⁡ϕσx+sin⁡θsin⁡ϕσy+cos⁡θσz){\displaystyle P_{\mathbf {n} }={\frac {1}{2}}(I+\sin \theta \cos \phi \sigma _{x}+\sin \theta \sin \phi \sigma _{y}+\cos \theta \sigma _{z})} , We see that the coefficients of the Pauli matrices above are simply the magnitudes of the unit vector n{\displaystyle {\mathbf {n} }} written out in spherical coordinates, so we can use the dot product as a shorthand notation.

    It is easy to verify that there is a sign change for projections of the down-state.

    Pn=12(I+n⋅σ){\displaystyle P_{\mathbf {n} }={\frac {1}{2}}(I+{\mathbf {n} }\cdot {\boldsymbol {\sigma }})} P−n=12(I−n⋅σ){\displaystyle P_{-{\mathbf {n} }}={\frac {1}{2}}(I-{\mathbf {n} }\cdot {\boldsymbol {\sigma }})}
  3. Step 3: Decompose the diagonal elements in terms of Pauli matrices.

  4. Step 4: Decompose the off-diagonal elements in terms of Pauli matrices.

  5. Step 5: Simplify the resulting expression.

Detailed Guide

One can start from angular momentum and solve the eigenvalue problem to derive the state below, but we will start with it directly in this article. |↑n⟩=cos⁡θ2|↑z⟩+eiϕsin⁡θ2|↓z⟩{\displaystyle |\uparrow _{\mathbf {n} }\rangle =\cos {\frac {\theta }{2}}|\uparrow _{\mathbf {z} }\rangle +e^{i\phi }\sin {\frac {\theta }{2}}|\downarrow _{\mathbf {z} }\rangle } This is a linear combination of the up-state and down-state in the z{\displaystyle {\mathbf {z} }} basis.

For a spin-1/2 particle, these two orthonormal basis vectors form a complete spanning set.

Thus, any state can be expressed as a linear combination of the basis vectors.

When a ket acts on a bra, the result is an operator. |↑n⟩⟨↑n|=(cos⁡θ2eiϕsin⁡θ2)(cos⁡θ2e−iϕsin⁡θ2)=(cos2⁡θ2e−iϕcos⁡θ2sin⁡θ2eiϕcos⁡θ2sin⁡θ2sin2⁡θ2){\displaystyle {\begin{aligned}|\uparrow _{\mathbf {n} }\rangle \langle \,\uparrow _{\mathbf {n} }\!|&={\begin{pmatrix}\cos {\frac {\theta }{2}}\\e^{i\phi }\sin {\frac {\theta }{2}}\end{pmatrix}}{\begin{pmatrix}\cos {\frac {\theta }{2}}&e^{-i\phi }\sin {\frac {\theta }{2}}\end{pmatrix}}\\&={\begin{pmatrix}\cos ^{2}{\frac {\theta }{2}}&e^{-i\phi }\cos {\frac {\theta }{2}}\sin {\frac {\theta }{2}}\\e^{i\phi }\cos {\frac {\theta }{2}}\sin {\frac {\theta }{2}}&\sin ^{2}{\frac {\theta }{2}}\end{pmatrix}}\end{aligned}}} This is a Hermitian operator, and it must, as we are working with an orthonormal basis and real eigenvalues. , We see that cos2⁡θ2=12(1+cos⁡θ),{\displaystyle \cos ^{2}{\frac {\theta }{2}}={\frac {1}{2}}(1+\cos \theta ),} and sin2⁡θ2=12(1−cos⁡θ).{\displaystyle \sin ^{2}{\frac {\theta }{2}}={\frac {1}{2}}(1-\cos \theta ).} Therefore, part of the operator can be written as below. 12I+12cos⁡θσz{\displaystyle {\frac {1}{2}}I+{\frac {1}{2}}\cos \theta \sigma _{z}} , On the off-diagonal, we see that the signs of the complex exponential directly correspond to σy.{\displaystyle \sigma _{y}.} Using Euler's formula and the double angle trig identity, we can expand out the exponential and write out the σx{\displaystyle \sigma _{x}} and σy{\displaystyle \sigma _{y}} terms as such. 12sin⁡θcos⁡ϕσx+12sin⁡θsin⁡ϕσy{\displaystyle {\frac {1}{2}}\sin \theta \cos \phi \sigma _{x}+{\frac {1}{2}}\sin \theta \sin \phi \sigma _{y}} Putting it all together, the projection operator can be written algebraically below.

Pn=12(I+sin⁡θcos⁡ϕσx+sin⁡θsin⁡ϕσy+cos⁡θσz){\displaystyle P_{\mathbf {n} }={\frac {1}{2}}(I+\sin \theta \cos \phi \sigma _{x}+\sin \theta \sin \phi \sigma _{y}+\cos \theta \sigma _{z})} , We see that the coefficients of the Pauli matrices above are simply the magnitudes of the unit vector n{\displaystyle {\mathbf {n} }} written out in spherical coordinates, so we can use the dot product as a shorthand notation.

It is easy to verify that there is a sign change for projections of the down-state.

Pn=12(I+n⋅σ){\displaystyle P_{\mathbf {n} }={\frac {1}{2}}(I+{\mathbf {n} }\cdot {\boldsymbol {\sigma }})} P−n=12(I−n⋅σ){\displaystyle P_{-{\mathbf {n} }}={\frac {1}{2}}(I-{\mathbf {n} }\cdot {\boldsymbol {\sigma }})}

About the Author

D

Daniel Brown

Creates helpful guides on crafts to inspire and educate readers.

39 articles
View all articles

Rate This Guide

--
Loading...
5
0
4
0
3
0
2
0
1
0

How helpful was this guide? Click to rate: