How to Determine Gear Ratio

Start with a two-gear train., Count the number of teeth on the drive gear., Count the number of teeth on the driven gear., Divide one teeth count by the other., Start with a gear train of more than two gears., Divide the teeth numbers of the drive...

8 Steps 4 min read Medium

Step-by-Step Guide

  1. Step 1: Start with a two-gear train.

    To be able to determine a gear ratio, you must have at least two gears engaged with each other — this is called a "gear train." Usually, the first gear is a "drive gear" attached to the motor shaft and the second is a "driven gear" attached to the load shaft.

    There may also be any number of gears between these two to transmit power from the drive gear to the driven gear: these are called "idler gears." For now, let's look at a gear train with only two gears in it.

    To be able to find a gear ratio, these gears have to be interacting with each other — in other words, their teeth need to be meshed and one should be turning the other.

    For example purposes, let's say that you have one small drive gear (gear 1) turning a larger driven gear (gear 2).
  2. Step 2: Count the number of teeth on the drive gear.

    One simple way to find the gear ratio between two interlocking gears is to compare the number of teeth (the little peg-like protrusions at the edge of the wheel) that they both have.

    Start by determining how many teeth are on the drive gear.

    You can do this by counting manually or, sometimes, by checking for this information labeled on the gear itself.

    For example purposes, let's say that the smaller drive gear in our system has 20 teeth. , Next, determine how many teeth are on the driven gear exactly as you did before for the drive gear.

    Let's say that, in our example, the driven gear has 30 teeth. , Now that you know how many teeth are on each gear, you can find the gear ratio relatively simply.

    Divide the driven gear teeth by the drive gear teeth.

    Depending on your assignment, you may write your answer as a decimal, a fraction, or in ratio form (i.e., x : y).

    In our example, dividing the 30 teeth of the driven gear by the 20 teeth of the drive gear gets us 30/20 =
    1.5.

    We can also write this as 3/2 or
    1.5 : 1, etc.

    What this gear ratio means is that the smaller driver gear must turn one and a half times to get the larger driven gear to make one complete turn.

    This makes sense — since the driven gear is bigger, it will turn more slowly., As its name suggests, a "gear train" can also be made from a long sequence of gears — not just a single driver gear and a single driven gear.

    In these cases, the first gear remains the driver gear, the last gear remains the driven gear, and the ones in the middle become "idler gears." These are often used to change the direction of rotation or to connect two gears when direct gearing would make them unwieldy or not readily available.Let's say for example purposes that the two-gear train described above is now driven by a small seven-toothed gear.

    In this case, the 30-toothed gear remains the driven gear and the 20-toothed gear (which was the driver before) is now an idler gear. , The important thing to remember when dealing with gear trains with more than two gears is that only the driver and driven gears (usually the first and last ones) matter.

    In other words, the idler gears don't affect the gear ratio of the overall train at all.

    When you've identified your driver gear and your driven gear, you can find the gear ratio exactly as before.

    In our example, we would find the gear ratio by dividing the thirty teeth of the driven gear by the seven teeth of our new driver. 30/7 = about
    4.3 (or
    4.3 : 1, etc.) This means that the driver gear has to turn about
    4.3 times to get the much larger driven gear to turn once. , You can find the gear ratios involving the idler gears as well, and you may want to in certain situations.

    In these cases, start from the drive gear and work toward the load gear.

    Treat the preceding gear as if it were the drive gear as far as the next gear is concerned.

    Divide the number of teeth on each "driven" gear by the number of teeth on the "drive" gear for each interlocking set of gears to calculate the intermediate gear ratios.

    In our example, the intermediate gear ratios are 20/7 =
    2.9 and 30/20 =
    1.5.

    Note that neither of these are equal to the gear ratio for the entire train,
    4.3.

    However, note also that (20/7) × (30/20) =
    4.3.

    In general, the intermediate gear ratios of a gear train will multiply together to equal the overall gear ratio.
  3. Step 3: Count the number of teeth on the driven gear.

  4. Step 4: Divide one teeth count by the other.

  5. Step 5: Start with a gear train of more than two gears.

  6. Step 6: Divide the teeth numbers of the drive and driven gears.

  7. Step 7: If desired

  8. Step 8: find the gear ratios for the intermediate gears.

Detailed Guide

To be able to determine a gear ratio, you must have at least two gears engaged with each other — this is called a "gear train." Usually, the first gear is a "drive gear" attached to the motor shaft and the second is a "driven gear" attached to the load shaft.

There may also be any number of gears between these two to transmit power from the drive gear to the driven gear: these are called "idler gears." For now, let's look at a gear train with only two gears in it.

To be able to find a gear ratio, these gears have to be interacting with each other — in other words, their teeth need to be meshed and one should be turning the other.

For example purposes, let's say that you have one small drive gear (gear 1) turning a larger driven gear (gear 2).

One simple way to find the gear ratio between two interlocking gears is to compare the number of teeth (the little peg-like protrusions at the edge of the wheel) that they both have.

Start by determining how many teeth are on the drive gear.

You can do this by counting manually or, sometimes, by checking for this information labeled on the gear itself.

For example purposes, let's say that the smaller drive gear in our system has 20 teeth. , Next, determine how many teeth are on the driven gear exactly as you did before for the drive gear.

Let's say that, in our example, the driven gear has 30 teeth. , Now that you know how many teeth are on each gear, you can find the gear ratio relatively simply.

Divide the driven gear teeth by the drive gear teeth.

Depending on your assignment, you may write your answer as a decimal, a fraction, or in ratio form (i.e., x : y).

In our example, dividing the 30 teeth of the driven gear by the 20 teeth of the drive gear gets us 30/20 =
1.5.

We can also write this as 3/2 or
1.5 : 1, etc.

What this gear ratio means is that the smaller driver gear must turn one and a half times to get the larger driven gear to make one complete turn.

This makes sense — since the driven gear is bigger, it will turn more slowly., As its name suggests, a "gear train" can also be made from a long sequence of gears — not just a single driver gear and a single driven gear.

In these cases, the first gear remains the driver gear, the last gear remains the driven gear, and the ones in the middle become "idler gears." These are often used to change the direction of rotation or to connect two gears when direct gearing would make them unwieldy or not readily available.Let's say for example purposes that the two-gear train described above is now driven by a small seven-toothed gear.

In this case, the 30-toothed gear remains the driven gear and the 20-toothed gear (which was the driver before) is now an idler gear. , The important thing to remember when dealing with gear trains with more than two gears is that only the driver and driven gears (usually the first and last ones) matter.

In other words, the idler gears don't affect the gear ratio of the overall train at all.

When you've identified your driver gear and your driven gear, you can find the gear ratio exactly as before.

In our example, we would find the gear ratio by dividing the thirty teeth of the driven gear by the seven teeth of our new driver. 30/7 = about
4.3 (or
4.3 : 1, etc.) This means that the driver gear has to turn about
4.3 times to get the much larger driven gear to turn once. , You can find the gear ratios involving the idler gears as well, and you may want to in certain situations.

In these cases, start from the drive gear and work toward the load gear.

Treat the preceding gear as if it were the drive gear as far as the next gear is concerned.

Divide the number of teeth on each "driven" gear by the number of teeth on the "drive" gear for each interlocking set of gears to calculate the intermediate gear ratios.

In our example, the intermediate gear ratios are 20/7 =
2.9 and 30/20 =
1.5.

Note that neither of these are equal to the gear ratio for the entire train,
4.3.

However, note also that (20/7) × (30/20) =
4.3.

In general, the intermediate gear ratios of a gear train will multiply together to equal the overall gear ratio.

About the Author

C

Carolyn Baker

Enthusiastic about teaching organization techniques through clear, step-by-step guides.

31 articles
View all articles

Rate This Guide

--
Loading...
5
0
4
0
3
0
2
0
1
0

How helpful was this guide? Click to rate: