How to Integrate by Parts when One Function Is a Polynomial
Evaluate the integral below., Choose u=x2{\displaystyle u=x^{2}} and dv=sinxdx{\displaystyle {\mathrm {d} }v=\sin x{\mathrm {d} }x}., Choose u=2x{\displaystyle u=2x} and dv=cosxdx{\displaystyle {\mathrm {d} }v=\cos x{\mathrm {d} }x}., Evaluate the...
Step-by-Step Guide
-
Step 1: Evaluate the integral below.
The integrand is a product of two functions: x2{\displaystyle x^{2}} and sinx.{\displaystyle \sin x.} ∫x2sinxdx{\displaystyle \int x^{2}\sin x{\mathrm {d} }x} -
Step 2: Choose u=x2{\displaystyle u=x^{2}} and dv=sinxdx{\displaystyle {\mathrm {d} }v=\sin x{\mathrm {d} }x}.
Differentiate u{\displaystyle u} to find du=2xdx{\displaystyle {\mathrm {d} }u=2x{\mathrm {d} }x} and integrate dv{\displaystyle {\mathrm {d} }v} to get v=−cosx.{\displaystyle v=-\cos x.} We can drop the constant of integration from finding v{\displaystyle v} because it will eventually drop out in the end.
Then we just plug all of these into the formula. ∫x2sinxdx=−x2cosx+∫2xcosxdx{\displaystyle \int x^{2}\sin x{\mathrm {d} }x=-x^{2}\cos x+\int 2x\cos x{\mathrm {d} }x} Notice that the second integral is positive because of the −cosx.{\displaystyle
-\cos x.} , Notice that we need to use integration by parts on the second integral.
So we will have to choose a new u{\displaystyle u} and dv.{\displaystyle {\mathrm {d} }v.} We then find that du=2dx{\displaystyle {\mathrm {d} }u=2{\mathrm {d} }x} and v=sinx.{\displaystyle v=\sin x.} Plug these into the formula.
Make sure to keep track that these new variables apply only to the second integral. ∫x2sinxdx=−x2cosx+2xsinx−∫2sinxdx{\displaystyle \int x^{2}\sin x{\mathrm {d} }x=-x^{2}\cos x+2x\sin x-\int 2\sin x{\mathrm {d} }x} We now see that the integral on the right is something that we can directly evaluate. , The antiderivative of sinx{\displaystyle \sin x} is −cosx.{\displaystyle
-\cos x.} Make sure to add the constant of integration C.{\displaystyle C.} ∫x2sinxdx=−x2cosx+2xsinx+2cosx+C{\displaystyle \int x^{2}\sin x{\mathrm {d} }x=-x^{2}\cos x+2x\sin x+2\cos x+C} -
Step 3: Choose u=2x{\displaystyle u=2x} and dv=cosxdx{\displaystyle {\mathrm {d} }v=\cos x{\mathrm {d} }x}.
-
Step 4: Evaluate the integral on the right.
Detailed Guide
The integrand is a product of two functions: x2{\displaystyle x^{2}} and sinx.{\displaystyle \sin x.} ∫x2sinxdx{\displaystyle \int x^{2}\sin x{\mathrm {d} }x}
Differentiate u{\displaystyle u} to find du=2xdx{\displaystyle {\mathrm {d} }u=2x{\mathrm {d} }x} and integrate dv{\displaystyle {\mathrm {d} }v} to get v=−cosx.{\displaystyle v=-\cos x.} We can drop the constant of integration from finding v{\displaystyle v} because it will eventually drop out in the end.
Then we just plug all of these into the formula. ∫x2sinxdx=−x2cosx+∫2xcosxdx{\displaystyle \int x^{2}\sin x{\mathrm {d} }x=-x^{2}\cos x+\int 2x\cos x{\mathrm {d} }x} Notice that the second integral is positive because of the −cosx.{\displaystyle
-\cos x.} , Notice that we need to use integration by parts on the second integral.
So we will have to choose a new u{\displaystyle u} and dv.{\displaystyle {\mathrm {d} }v.} We then find that du=2dx{\displaystyle {\mathrm {d} }u=2{\mathrm {d} }x} and v=sinx.{\displaystyle v=\sin x.} Plug these into the formula.
Make sure to keep track that these new variables apply only to the second integral. ∫x2sinxdx=−x2cosx+2xsinx−∫2sinxdx{\displaystyle \int x^{2}\sin x{\mathrm {d} }x=-x^{2}\cos x+2x\sin x-\int 2\sin x{\mathrm {d} }x} We now see that the integral on the right is something that we can directly evaluate. , The antiderivative of sinx{\displaystyle \sin x} is −cosx.{\displaystyle
-\cos x.} Make sure to add the constant of integration C.{\displaystyle C.} ∫x2sinxdx=−x2cosx+2xsinx+2cosx+C{\displaystyle \int x^{2}\sin x{\mathrm {d} }x=-x^{2}\cos x+2x\sin x+2\cos x+C}
About the Author
Isabella Ward
Dedicated to helping readers learn new skills in crafts and beyond.
Rate This Guide
How helpful was this guide? Click to rate: