How to Integrate Trig Functions
Know the relevant trig identities., Separate a sin2(x){\displaystyle \sin ^{2}(x)}. , Rewrite all the rest in terms of cos(x){\displaystyle \cos(x)} and/or sin(x){\displaystyle \sin(x)} using Pythagorean Identities. , Use algebra, substitution...
Step-by-Step Guide
-
Step 1: Know the relevant trig identities.
These trig identities may be useful to know.
Pythagorean Identities (PI): sin2(x)+cos2(x)=1{\displaystyle \sin ^{2}(x)+\cos ^{2}(x)=1} sin2(x)=1−cos2(x){\displaystyle \sin ^{2}(x)=1-\cos ^{2}(x)} cos2(x)=1−sin2(x){\displaystyle \cos ^{2}(x)=1-\sin ^{2}(x)} sec2(x)=tan2(x)+1{\displaystyle \sec ^{2}(x)=\tan ^{2}(x)+1} csc2(x)=cot2(x)+1{\displaystyle \csc ^{2}(x)=\cot ^{2}(x)+1} Double Angle Identities (DAI): sin(2x)=2sin(x)cos(x){\displaystyle \sin(2x)=2\sin(x)\cos(x)} cos(2x)=cos2(x)−sin2(x){\displaystyle \cos(2x)=\cos ^{2}(x)-\sin ^{2}(x)} cos(2x)=1−sin2(x){\displaystyle \cos(2x)=1-\sin ^{2}(x)} cos2(x)=12(1+cos(2x)){\displaystyle \cos ^{2}(x)={\frac {1}{2}}(1+\cos(2x))} sin2(x)=12(1−cos(2x)){\displaystyle \sin ^{2}(x)={\frac {1}{2}}(1-\cos(2x))} -
Step 2: Separate a sin2(x){\displaystyle \sin ^{2}(x)}.
,,,, This is done to simplify the integrand.
Let u=ln(x){\displaystyle u=\ln(x)}.
Then du=1xdx{\displaystyle du={\frac {1}{x}}dx}.
This is done to simplify the integrand.
Substitution yields ∫sin5(u)du{\displaystyle \int \sin ^{5}(u)du} , The goal here is to get a term defined by a trig identity. ∫sin4(u)sin(u)du{\displaystyle \int \sin ^{4}(u)\sin(u)du} ∫(sin2(u))2sin(u)du{\displaystyle \int {(\sin ^{2}(u))}^{2}\sin(u)du} , Our goal here is to set up the integrand for another u-sub.
Therefore, we want the integrand to consist of a trig function and it's known derivative. ∫(1−cos2(u))2sin(u)du{\displaystyle \int {(1-\cos ^{2}(u))}^{2}\sin(u)du} , Let w=cos(u){\displaystyle w=\cos(u)}.
Then −dw=sin(u)du{\displaystyle
-dw=\sin(u)du} Substitution yields −∫(1−w2)2dw{\displaystyle
-\int {(1-w^{2})}^{2}dw} , Distribute the two binomials.
Combine like terms. −∫1−2w2+w4dw{\displaystyle
-\int 1-2w^{2}+w^{4}dw} , −+C{\displaystyle
-+C} , w=cos(u){\displaystyle w=\cos(u)} and u=ln(x){\displaystyle u=\ln(x)} −+C{\displaystyle
-+C} ,,,, This is done to simplify the integrand.
Let u=7x{\displaystyle u=7x}.
Then 17du=dx{\displaystyle {\frac {1}{7}}du=dx}.
Substitution yields 17∫sin2(u)cos2(u)du{\displaystyle {\frac {1}{7}}\int \sin ^{2}(u)\cos ^{2}(u)du} , The goal here is to get the integrand in terms of one trig function. ∫du{\displaystyle \int {}du} , Simplify. 128∫(1−cos(2u))(1+cos(2u))du{\displaystyle {\frac {1}{28}}\int {(1-\cos(2u))(1+\cos(2u))}du} 128∫1−cos2(2u)du{\displaystyle {\frac {1}{28}}\int {1-\cos ^{2}(2u)}du} , This is done to make the integrand integrable. 128∫1−(12(1+cos(4u)))du{\displaystyle {\frac {1}{28}}\int {1-({\frac {1}{2}}(1+\cos(4u)))}du} , Distribute and combine like terms. 128∫12−12cos(4u)du{\displaystyle {\frac {1}{28}}\int {{\frac {1}{2}}-{\frac {1}{2}}\cos(4u)}du} , u=7x{\displaystyle u=7x} 128+C{\displaystyle {\frac {1}{28}}+C} ,,,,, This is done to simplify the integrand.
Let u=x2{\displaystyle u={\frac {x}{2}}}.
Then 2du=dx{\displaystyle 2du=dx} Change the bounds of integration since the integral at hand is a definite integral.
When x=0{\displaystyle x=0}, u=0{\displaystyle u=0} When x=π{\displaystyle x=\pi }, u=π2{\displaystyle u={\frac {\pi }{2}}} Substitution yields 2∫0π2cos4(u)du{\displaystyle 2\int _{0}^{\frac {\pi }{2}}\cos ^{4}(u)du} , Get the integrand in to a form such that an identity can be used. 2∫0π2(cos2(u))2du{\displaystyle 2\int _{0}^{\frac {\pi }{2}}{(\cos ^{2}(u))}^{2}du} ,, Simplify. 2∫0π212(1+cos(2u)+cos2(2u))du{\displaystyle 2\int _{0}^{\frac {\pi }{2}}{\frac {1}{2}}(1+\cos(2u)+\cos ^{2}(2u))du} , This is done to get cos2(2u){\displaystyle \cos ^{2}(2u)} into a term we can integrate. 12∫0π21+2cos(2u)+12(1+2cos(4u))du{\displaystyle {\frac {1}{2}}\int _{0}^{\frac {\pi }{2}}1+2\cos(2u)+{\frac {1}{2}}(1+2\cos(4u))du} , Simplify. 12∫0π232+2cos(2u)+12cos(4u)du{\displaystyle {\frac {1}{2}}\int _{0}^{\frac {\pi }{2}}{\frac {3}{2}}+2\cos(2u)+{\frac {1}{2}}\cos(4u)du} , Since the bounds were converted, don't re-sub. 120π2{\displaystyle {\frac {1}{2}}{}_{0}^{\frac {\pi }{2}}} , =3π8{\displaystyle ={\frac {3\pi }{8}}} ,,,,, This is done to simplify the integrand.
Let u=y{\displaystyle u={\sqrt {y}}}.
Then 2du=1ydy{\displaystyle 2du={\frac {1}{\sqrt {y}}}dy}.
Substitution yields 2∫tan4(u)du{\displaystyle 2\int \tan ^{4}(u)du} , The goal here is to get a term we can replace with a Pythagorean Identity. 2∫tan2(u)tan2(u)du{\displaystyle 2\int \tan ^{2}(u)\tan ^{2}(u)du} , Only substitute one tan2(u){\displaystyle \tan ^{2}(u)}.
This is done to get a term and it's derivative in the integrand; this a set up for a u-sub. 2∫(sec2(u)−1)tan2(u)du{\displaystyle 2\int (\sec ^{2}(u)-1)\tan ^{2}(u)du} , Separate the integrand to make anti-differentiation easier. 2∫tan2(u)sec2(u)du−2∫tan2(u)du{\displaystyle 2\int {\tan ^{2}(u)\sec ^{2}(u)}du-2\int {\tan ^{2}(u)}du} , Then dw=sec2(u)du{\displaystyle dw=\sec ^{2}(u)du} Substitution yields 2∫w2dw+2∫tan2(u)du{\displaystyle 2\int w^{2}dw+2\int \tan ^{2}(u)du} , ∫w2dw+∫sec2(u)−1du{\displaystyle \int w^{2}dw+\int \sec ^{2}(u)-1du} , u=y{\displaystyle u={\sqrt {y}}} 23tan3(y)−2tan(y)−2y+C{\displaystyle {\frac {2}{3}}\tan ^{3}({\sqrt {y}})-2\tan({\sqrt {y}})-2{\sqrt {y}}+C} ,,,,, Let u=1θ{\displaystyle u={\frac {1}{\theta }}}.
Then −du=1θ2{\displaystyle
-du={\frac {1}{\theta ^{2}}}}.
Substitution yields −∫sec4(u)tan3(u)du{\displaystyle
-\int \sec ^{4}(u)\tan ^{3}(u)du} , Rearrange such that we can replace a term with a Pythagorean Identity.
Note, sec(u)tan(u){\displaystyle \sec(u)\tan(u)} is the elementary derivative of sec(u){\displaystyle \sec(u)}. −∫sec3(u)tan2(u)sec(u)tan(u)du{\displaystyle
-\int \sec ^{3}(u)\tan ^{2}(u)\sec(u)\tan(u)du} ,, Keep sec(u)tan(u){\displaystyle \sec(u)\tan(u)} intact.
Remember, we want to have a trig function and it's derivative in the integrand to employ a u-sub. ∫(sec5(u)−sec3(u))sec(u)tan(u)du{\displaystyle \int (\sec ^{5}(u)-\sec ^{3}(u))\sec(u)\tan(u)du} , Let w=sec(u){\displaystyle w=\sec(u)}.
Then dw=sec(u)tan(u)du{\displaystyle dw=\sec(u)\tan(u)du} Substitution yields −∫(w5−w3)dw{\displaystyle
-\int (w^{5}-w^{3})dw} , −+C{\displaystyle
-+C} , −+C{\displaystyle
-+C} ,,,,, Let u=t2{\displaystyle u=t^{2}}.
Then du2=tdt{\displaystyle {\frac {du}{2}}=tdt} Substitution yields 12∫sec4(u)du{\displaystyle {\frac {1}{2}}\int \sec ^{4}(u)du} , Rearrange such that we can use a Pythagorean Identity. 12∫sec2(u)sec2(u)du{\displaystyle {\frac {1}{2}}\int \sec ^{2}(u)\sec ^{2}(u)du} , Keep one sec2(u){\displaystyle \sec ^{2}(u)} intact.
We will need for a u-sub. 12∫(1+tan2(u))sec2(u)du{\displaystyle {\frac {1}{2}}\int (1+\tan ^{2}(u))\sec ^{2}(u)du} , Let w=tan(u){\displaystyle w=\tan(u)}.
Then dw=sec2(u){\displaystyle dw=\sec ^{2}(u)} Substitution yields 12∫1+w2dw{\displaystyle {\frac {1}{2}}\int 1+w^{2}dw} , 12+C{\displaystyle {\frac {1}{2}}+C} , w=tan(u){\displaystyle w=\tan(u)} and u=t2{\displaystyle u=t^{2}} tan(t2)2+tan(t2)6+C{\displaystyle {\frac {\tan(t^{2})}{2}}+{\frac {\tan(t^{2})}{6}}+C} -
Step 3: Rewrite all the rest in terms of cos(x){\displaystyle \cos(x)} and/or sin(x){\displaystyle \sin(x)} using Pythagorean Identities.
-
Step 4: Use algebra
-
Step 5: substitution
-
Step 6: and trig identities when applicable.
-
Step 7: Evaluate ∫sin5(lnx)xdx{\displaystyle \int {\frac {\sin ^{5}(lnx)}{x}}dx}.
-
Step 8: Do a u-sub.
-
Step 9: Manipulate the integrand algebraically.
-
Step 10: Use a Pythagorean Identity to get sin2(u){\displaystyle \sin ^{2}(u)} in terms of cosine.
-
Step 11: Do a u-sub.
-
Step 12: Manipulate the integrand algebraically.
-
Step 13: Integrate.
-
Step 14: Re-sub.
-
Step 15: Use a Double-Angle Identity for sin2(x){\displaystyle \sin ^{2}(x)} and/or cos2(x){\displaystyle \cos ^{2}(x)}
-
Step 16: Use algebra
-
Step 17: substitution
-
Step 18: and trig identities when applicable.
-
Step 19: Evaluate ∫sin2(7x)cos2(7x)dx{\displaystyle \int \sin ^{2}(7x)\cos ^{2}(7x)dx}.
-
Step 20: Do a u-sub.
-
Step 21: Use a Double-Angle Identity for sin2(u){\displaystyle \sin ^{2}(u)} and cos2(u){\displaystyle \cos ^{2}(u)}.
-
Step 22: Manipulate the integrand algebraically.
-
Step 23: Use a Double-Angle Identity for cos2(2u){\displaystyle \cos ^{2}(2u)}.
-
Step 24: Manipulate the integrand algebraically.
-
Step 25: Integrate and re-sub.
-
Step 26: Separate a sin2(x){\displaystyle \sin ^{2}(x)}.
-
Step 27: Rewrite all the rest in terms of cos(x){\displaystyle \cos(x)} and/or sin(x){\displaystyle \sin(x)} using Pythagorean Identities.
-
Step 28: Use algebra
-
Step 29: substitution
-
Step 30: and trig identities when applicable.
-
Step 31: Evaluate ∫πcos4x2dx{\displaystyle \int _{0}^{\pi }\cos ^{4}{\frac {x}{2}}dx}.
-
Step 32: Do a u-sub.
-
Step 33: Manipulate the integrand algebraically.
-
Step 34: Use a Double-Angle Identity for cos2(u){\displaystyle \cos ^{2}(u)} 2∫0π22du{\displaystyle 2\int _{0}^{\frac {\pi }{2}}{}^{2}du}
-
Step 35: Manipulate the integrand algebraically.
-
Step 36: Use a Double-Angle Identity for cos2(2u){\displaystyle \cos ^{2}(2u)}.
-
Step 37: Manipulate the integrand algebraically.
-
Step 38: Integrate.
-
Step 39: Compute the integral.
-
Step 40: Separate a tan(x){\displaystyle \tan(x)}.
-
Step 41: Use Pythagorean Identities to get all else in terms of secant.
-
Step 42: Use algebra
-
Step 43: substitution
-
Step 44: and trig identities when applicable.
-
Step 45: Evaluate ∫tan4yydy{\displaystyle \int {\frac {\tan ^{4}{\sqrt {y}}}{\sqrt {y}}}dy}.
-
Step 46: Do a u-sub.
-
Step 47: Manipulate the integrand algebraically.
-
Step 48: Use a Pythagorean Identity for tan2(x){\displaystyle \tan ^{2}(x)}.
-
Step 49: Manipulate the integrand algebraically.
-
Step 50: Do a u-sub on the first integral Let w=tan(u){\displaystyle w=\tan(u)}.
-
Step 51: Use a Pythagorean Identity on the second integral.
-
Step 52: Integrate and re-sub.
-
Step 53: Separate a tan(x){\displaystyle \tan(x)}.
-
Step 54: Use Pythagorean Identities to get all else in terms of secant.
-
Step 55: Substitute a sec(x){\displaystyle \sec(x)}.
-
Step 56: Evaluate ∫sec4(1θ)tan3(1θ)1θ2dθ{\displaystyle \int \sec ^{4}({\frac {1}{\theta }})\tan ^{3}({\frac {1}{\theta }}){\frac {1}{\theta ^{2}}}d\theta }
-
Step 57: Do a u-sub.
-
Step 58: Manipulate the integrand algebraically.
-
Step 59: Use a Pythagorean Identity for tan2(u){\displaystyle \tan ^{2}(u)} ∫sec3(u)(sec2(u)−1)sec(u)tan(u)du{\displaystyle \int \sec ^{3}(u)(\sec ^{2}(u)-1)\sec(u)\tan(u)du}
-
Step 60: Manipulate the integrand algebraically.
-
Step 61: Do a u-sub.
-
Step 62: Integrate.
-
Step 63: Re-sub.
-
Step 64: Separate a sec2(x){\displaystyle \sec ^{2}(x)}.
-
Step 65: Use a Pythagorean Identity to get all else in terms of tangent.
-
Step 66: Substitute a tan(x){\displaystyle \tan(x)} when applicable.
-
Step 67: Evaluate ∫tsec4(t2)dt{\displaystyle \int t\sec ^{4}(t^{2})dt}
-
Step 68: Do a u-sub.
-
Step 69: Manipulate the integrand algebraically.
-
Step 70: Use a Pythagorean Identity for sec2(u){\displaystyle \sec ^{2}(u)}.
-
Step 71: Do a u-sub.
-
Step 72: Integrate.
-
Step 73: Re-sub.
Detailed Guide
These trig identities may be useful to know.
Pythagorean Identities (PI): sin2(x)+cos2(x)=1{\displaystyle \sin ^{2}(x)+\cos ^{2}(x)=1} sin2(x)=1−cos2(x){\displaystyle \sin ^{2}(x)=1-\cos ^{2}(x)} cos2(x)=1−sin2(x){\displaystyle \cos ^{2}(x)=1-\sin ^{2}(x)} sec2(x)=tan2(x)+1{\displaystyle \sec ^{2}(x)=\tan ^{2}(x)+1} csc2(x)=cot2(x)+1{\displaystyle \csc ^{2}(x)=\cot ^{2}(x)+1} Double Angle Identities (DAI): sin(2x)=2sin(x)cos(x){\displaystyle \sin(2x)=2\sin(x)\cos(x)} cos(2x)=cos2(x)−sin2(x){\displaystyle \cos(2x)=\cos ^{2}(x)-\sin ^{2}(x)} cos(2x)=1−sin2(x){\displaystyle \cos(2x)=1-\sin ^{2}(x)} cos2(x)=12(1+cos(2x)){\displaystyle \cos ^{2}(x)={\frac {1}{2}}(1+\cos(2x))} sin2(x)=12(1−cos(2x)){\displaystyle \sin ^{2}(x)={\frac {1}{2}}(1-\cos(2x))}
,,,, This is done to simplify the integrand.
Let u=ln(x){\displaystyle u=\ln(x)}.
Then du=1xdx{\displaystyle du={\frac {1}{x}}dx}.
This is done to simplify the integrand.
Substitution yields ∫sin5(u)du{\displaystyle \int \sin ^{5}(u)du} , The goal here is to get a term defined by a trig identity. ∫sin4(u)sin(u)du{\displaystyle \int \sin ^{4}(u)\sin(u)du} ∫(sin2(u))2sin(u)du{\displaystyle \int {(\sin ^{2}(u))}^{2}\sin(u)du} , Our goal here is to set up the integrand for another u-sub.
Therefore, we want the integrand to consist of a trig function and it's known derivative. ∫(1−cos2(u))2sin(u)du{\displaystyle \int {(1-\cos ^{2}(u))}^{2}\sin(u)du} , Let w=cos(u){\displaystyle w=\cos(u)}.
Then −dw=sin(u)du{\displaystyle
-dw=\sin(u)du} Substitution yields −∫(1−w2)2dw{\displaystyle
-\int {(1-w^{2})}^{2}dw} , Distribute the two binomials.
Combine like terms. −∫1−2w2+w4dw{\displaystyle
-\int 1-2w^{2}+w^{4}dw} , −+C{\displaystyle
-+C} , w=cos(u){\displaystyle w=\cos(u)} and u=ln(x){\displaystyle u=\ln(x)} −+C{\displaystyle
-+C} ,,,, This is done to simplify the integrand.
Let u=7x{\displaystyle u=7x}.
Then 17du=dx{\displaystyle {\frac {1}{7}}du=dx}.
Substitution yields 17∫sin2(u)cos2(u)du{\displaystyle {\frac {1}{7}}\int \sin ^{2}(u)\cos ^{2}(u)du} , The goal here is to get the integrand in terms of one trig function. ∫du{\displaystyle \int {}du} , Simplify. 128∫(1−cos(2u))(1+cos(2u))du{\displaystyle {\frac {1}{28}}\int {(1-\cos(2u))(1+\cos(2u))}du} 128∫1−cos2(2u)du{\displaystyle {\frac {1}{28}}\int {1-\cos ^{2}(2u)}du} , This is done to make the integrand integrable. 128∫1−(12(1+cos(4u)))du{\displaystyle {\frac {1}{28}}\int {1-({\frac {1}{2}}(1+\cos(4u)))}du} , Distribute and combine like terms. 128∫12−12cos(4u)du{\displaystyle {\frac {1}{28}}\int {{\frac {1}{2}}-{\frac {1}{2}}\cos(4u)}du} , u=7x{\displaystyle u=7x} 128+C{\displaystyle {\frac {1}{28}}+C} ,,,,, This is done to simplify the integrand.
Let u=x2{\displaystyle u={\frac {x}{2}}}.
Then 2du=dx{\displaystyle 2du=dx} Change the bounds of integration since the integral at hand is a definite integral.
When x=0{\displaystyle x=0}, u=0{\displaystyle u=0} When x=π{\displaystyle x=\pi }, u=π2{\displaystyle u={\frac {\pi }{2}}} Substitution yields 2∫0π2cos4(u)du{\displaystyle 2\int _{0}^{\frac {\pi }{2}}\cos ^{4}(u)du} , Get the integrand in to a form such that an identity can be used. 2∫0π2(cos2(u))2du{\displaystyle 2\int _{0}^{\frac {\pi }{2}}{(\cos ^{2}(u))}^{2}du} ,, Simplify. 2∫0π212(1+cos(2u)+cos2(2u))du{\displaystyle 2\int _{0}^{\frac {\pi }{2}}{\frac {1}{2}}(1+\cos(2u)+\cos ^{2}(2u))du} , This is done to get cos2(2u){\displaystyle \cos ^{2}(2u)} into a term we can integrate. 12∫0π21+2cos(2u)+12(1+2cos(4u))du{\displaystyle {\frac {1}{2}}\int _{0}^{\frac {\pi }{2}}1+2\cos(2u)+{\frac {1}{2}}(1+2\cos(4u))du} , Simplify. 12∫0π232+2cos(2u)+12cos(4u)du{\displaystyle {\frac {1}{2}}\int _{0}^{\frac {\pi }{2}}{\frac {3}{2}}+2\cos(2u)+{\frac {1}{2}}\cos(4u)du} , Since the bounds were converted, don't re-sub. 120π2{\displaystyle {\frac {1}{2}}{}_{0}^{\frac {\pi }{2}}} , =3π8{\displaystyle ={\frac {3\pi }{8}}} ,,,,, This is done to simplify the integrand.
Let u=y{\displaystyle u={\sqrt {y}}}.
Then 2du=1ydy{\displaystyle 2du={\frac {1}{\sqrt {y}}}dy}.
Substitution yields 2∫tan4(u)du{\displaystyle 2\int \tan ^{4}(u)du} , The goal here is to get a term we can replace with a Pythagorean Identity. 2∫tan2(u)tan2(u)du{\displaystyle 2\int \tan ^{2}(u)\tan ^{2}(u)du} , Only substitute one tan2(u){\displaystyle \tan ^{2}(u)}.
This is done to get a term and it's derivative in the integrand; this a set up for a u-sub. 2∫(sec2(u)−1)tan2(u)du{\displaystyle 2\int (\sec ^{2}(u)-1)\tan ^{2}(u)du} , Separate the integrand to make anti-differentiation easier. 2∫tan2(u)sec2(u)du−2∫tan2(u)du{\displaystyle 2\int {\tan ^{2}(u)\sec ^{2}(u)}du-2\int {\tan ^{2}(u)}du} , Then dw=sec2(u)du{\displaystyle dw=\sec ^{2}(u)du} Substitution yields 2∫w2dw+2∫tan2(u)du{\displaystyle 2\int w^{2}dw+2\int \tan ^{2}(u)du} , ∫w2dw+∫sec2(u)−1du{\displaystyle \int w^{2}dw+\int \sec ^{2}(u)-1du} , u=y{\displaystyle u={\sqrt {y}}} 23tan3(y)−2tan(y)−2y+C{\displaystyle {\frac {2}{3}}\tan ^{3}({\sqrt {y}})-2\tan({\sqrt {y}})-2{\sqrt {y}}+C} ,,,,, Let u=1θ{\displaystyle u={\frac {1}{\theta }}}.
Then −du=1θ2{\displaystyle
-du={\frac {1}{\theta ^{2}}}}.
Substitution yields −∫sec4(u)tan3(u)du{\displaystyle
-\int \sec ^{4}(u)\tan ^{3}(u)du} , Rearrange such that we can replace a term with a Pythagorean Identity.
Note, sec(u)tan(u){\displaystyle \sec(u)\tan(u)} is the elementary derivative of sec(u){\displaystyle \sec(u)}. −∫sec3(u)tan2(u)sec(u)tan(u)du{\displaystyle
-\int \sec ^{3}(u)\tan ^{2}(u)\sec(u)\tan(u)du} ,, Keep sec(u)tan(u){\displaystyle \sec(u)\tan(u)} intact.
Remember, we want to have a trig function and it's derivative in the integrand to employ a u-sub. ∫(sec5(u)−sec3(u))sec(u)tan(u)du{\displaystyle \int (\sec ^{5}(u)-\sec ^{3}(u))\sec(u)\tan(u)du} , Let w=sec(u){\displaystyle w=\sec(u)}.
Then dw=sec(u)tan(u)du{\displaystyle dw=\sec(u)\tan(u)du} Substitution yields −∫(w5−w3)dw{\displaystyle
-\int (w^{5}-w^{3})dw} , −+C{\displaystyle
-+C} , −+C{\displaystyle
-+C} ,,,,, Let u=t2{\displaystyle u=t^{2}}.
Then du2=tdt{\displaystyle {\frac {du}{2}}=tdt} Substitution yields 12∫sec4(u)du{\displaystyle {\frac {1}{2}}\int \sec ^{4}(u)du} , Rearrange such that we can use a Pythagorean Identity. 12∫sec2(u)sec2(u)du{\displaystyle {\frac {1}{2}}\int \sec ^{2}(u)\sec ^{2}(u)du} , Keep one sec2(u){\displaystyle \sec ^{2}(u)} intact.
We will need for a u-sub. 12∫(1+tan2(u))sec2(u)du{\displaystyle {\frac {1}{2}}\int (1+\tan ^{2}(u))\sec ^{2}(u)du} , Let w=tan(u){\displaystyle w=\tan(u)}.
Then dw=sec2(u){\displaystyle dw=\sec ^{2}(u)} Substitution yields 12∫1+w2dw{\displaystyle {\frac {1}{2}}\int 1+w^{2}dw} , 12+C{\displaystyle {\frac {1}{2}}+C} , w=tan(u){\displaystyle w=\tan(u)} and u=t2{\displaystyle u=t^{2}} tan(t2)2+tan(t2)6+C{\displaystyle {\frac {\tan(t^{2})}{2}}+{\frac {\tan(t^{2})}{6}}+C}
About the Author
Larry Webb
Specializes in breaking down complex lifestyle topics into simple steps.
Rate This Guide
How helpful was this guide? Click to rate: